Stormwater Runoff Reduction Plan

West Haven, Connecticut

Created by: Emma Saavedra, James Sheridan, Katherine Nee, and RosaLinda Sibilio -UConn undergraduate students.

Mike Dietz, David Dickson, Chester Arnold, and Amanda Ryan - UConn Center for Land Use Education and Research.

IMPERVIOUS SURFACES AND RUNOFF

Impervious surfaces, including roads, rooftops, parking lots, and other developments do not allow water to penetrate through them. Natural surfaces, such as grass, leaf litter, vegetated areas, or dirt areas absorb a significant portion of water from precipitation and runoff. Once water penetrates the ground, it then flows into surface water bodies or is recharged into groundwater aquifers. When natural surfaces are replaced with impervious surfaces, the water cycle is disrupted. As a result, soil infiltration decreases, while surface runoff increases substantially, and is often diverted into stormwater management systems and discharged directly into the local water bodies. Runoff over impervious surfaces collects pollutants, and causes flooding and erosion that negatively affect the water quality of local water bodies. To prevent a decrease in water quality, runoff can to be disconnected from the stormwater management system by implementing green infrastructure practices that reduce or convert impervious practices. For instance, downspouts on buildings and large areas of impervious surface can be designed to direct runoff into rain gardens and bioretention areas, box planters, tree box filters, or rain barrels. Previously impervious surfaces (roads, parking lots, pathways) can be converted into pervious surfaces using pervious alternatives to traditional materials.

COMMON GREEN INFRASTRUCTURE PRACTICES

Rain Gardens and Bioretention System

Pervious Pavement

Rainwater Harvesting

Planters

RAIN GARDENS

A **rain garden** is a piece of green infrastructure designed to capture precipitation runoff from an impervious surface. By doing so, water is allowed to percolate into the ground rather than directly entering stormwater management systems. They are usually built adjacent to the impervious area in question and are depressed approximately around 6 inches, depending on how much area is available. Rain gardens not only help to reduce pollution of local waters, but also add to the aesthetic appeal and biodiversity of urban areas.

When built next to a parking lot, one or more sections of curb is cut and water is directed through a path composed of cobble or gravel to minimize erosion. If implemented next to a building, gutters can direct water into the garden. From here, the water is either taken up by plants or enters the soil, and eventually, the water table via percolation. Appropriate plants for a rain garden tend to be shrubs or grasses that are tolerant to drought, flooding, and exposure to high salt concentrations. Ideally, these gardens are planted with hardy native perennials to minimize the need for maintenance. A **bioretention** is an enlarged rain garden specifically engineered to handle larger quantities of water.

BUFFER

The buffer surrounds a rain garden, slows down the flow of water into the rain garden, filters out sediment, and provides absorption of pollutants in stormwater runoff.

PLANTING SOIL LAYER

This layer is usually native soil. It is best to conduct a soil test of the area checking the nutrient levels and pH to ensure adequate plant growth.

INLET .

The inlet is the location where stormwater enters the rain garden. Stones are often used to slow down the water flow and prevent erosion.

DEPRESSION

The depression is the area of the rain garden that slopes down into the ponding area. It serves as a holding area and stores runoff awaiting treatment and infiltration.

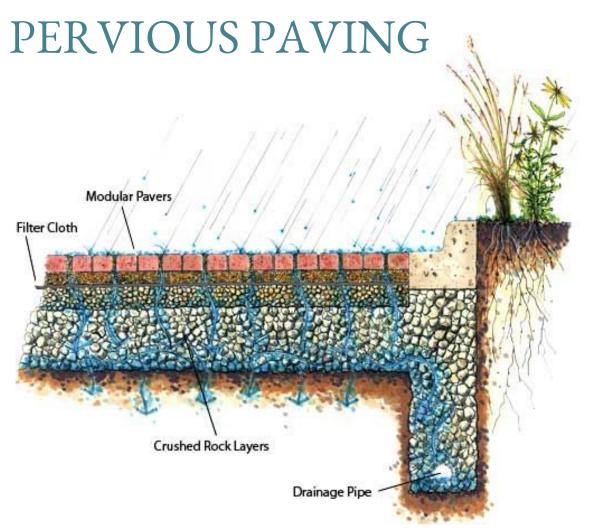
ORGANIC MATTER

Below the ponding area is the organic matter, such as compost and a 3" layer of triple shredded hardwood mulch. The mulch acts as a filter and provides a home to microorganisms that break down pollutants.

PONDING AREA

The ponding area is the lowest, deepest visible area of the rain garden. The ponding area should be level so that the maximum amount of water can be filtered and infiltrated. It is very important that this area drains within 24 hours to avoid problems with stagnant water that can become mosquito breeding habitat.

SAND BED


If drainage is a problem, a sand bed may be necessary to improve drainage. Adding a layer of coarse sand (also known as bank run sand or concrete sand) will increase air space and promote infiltration. It is important that sand used in the rain garden is not play box sand or mason sand as these fine sands are not coarse enough to improve soil infiltration and may impede drainage.

BERM -

The berm is a constructed mound, or bank of earth, that acts as a barrier to control, slowdown, and contain the stormwater in the rain garden. The berm can be vegetated and/or mulched.

OVERFLOW -

The overflow (outlet) area serves as a way for stormwater to exit the rain garden during larger rain events. An overflow notch can be used as a way to direct the stormwater exiting the rain garden to a particular area surrounding the rain garden.

Pervious paving is an alternative to traditional asphalt or concrete that allows for the infiltration of water. Ideal locations for pervious paving are relatively flat areas that take on a fair amount of water from surrounding impervious surfaces during storm events. Pervious asphalt needs to be replaced less often than traditional asphalt. As a result of the material being porous, it is less susceptible to seasonal expansion and contraction than traditional asphalt. This reduces the occurrence of frost heaves and seasonal cracks and prolongs its lifespan. Pervious paving is the most costly green infrastructure practice as it covers a large area and maintenance is required. Maintenance practices include cleaning techniques such as pressure washing and vacuum sweeping to dislodge sand, dirt, leaves and other debris that infiltrate the void structure of the pervious concrete and inhibit its permeability.

Pervious paving often reduces the need for snow removal as well. With traditional concrete and asphalt, water from melted snow cannot infiltrate so it often freezes into black ice or acts as runoff and takes salt with it. Pervious paving allow this water to enter the ground, resulting in a decreased need for salting as well as less cost for snow removal maintenance. This not only puts less stress on the stormwater management system, but relevies local aquatic ecosystems as well.

RAINWATER HARVESTING

Rainwater harvesting is the diversion of water from gutters and downspouts which would otherwise end up in the municipal stormwater management system. Roof runoff is fed into large **cisterns** which retain the water until it can be repurposed for garden watering, domestic use, fire protection and a variety of other ways. Not only does this aid in reducing runoff and the issues that come with that, but it also reduces stress on private well and municipal water supplies. Cisterns are usually situated beside buildings where gutters drain water from the roof.

Both the amount of water needed as well as the area of impermeable surface are important to pay attention to when deciding how large a cistern to install. The size of the cistern also dictates what material it should be made of. For small drainage areas, PVC is appropriate, but as the size increases steel or even concrete may be necessary. Depending on the anticipated use of the water, a filter may be imperative to prevent contaminants from entering the cistern. Maintenance practices include relocation of cisterns in the winter months to prevent them from freezing.

ALMA E. PAGELS ELEMENTARY SCHOOL

Option 1: Southwest Corner of Driveway

1,600	Rain Garden	40,690	

Suggested Green

Infrastructure

Annual Gallons

Treated

Annual Nitrogen

Reduction

(lb N/yr)

0.277

Drainage Area

(sq ft)

Runoff originating downslope from the southern storm drain can be diverted from entering the storm drain by constructing a rain garden. The runoff could be redirected with curb cuts. Due to this locations close proximity to the road, a rain garden here would receive a lot of visibility and would

enhance the school's curb appeal.

Annual Phosphorus

Reduction

(lb P/yr)

0.019

Suggested Practice

Size (sq ft)

270

CONTACT & PARTNERS

This project was funded by a grant from the Long Island Sound Futures Fund of the National Fish and Wildlife Foundation. It is a partnership of the University of Connecticut Center for Land Use Education and Research (CLEAR) and Rutgers University Water Resources Program, and is adapted from a process developed by the latter.

Contacts:

Mike Dietz, UConn CLEAR, <u>michael.dietz@uconn.edu</u>, 860-486-2436 Dave Dickson, UConn CLEAR, <u>david.dickson@uconn.edu</u>, 860-345-5228

